

Published on Web 11/24/2006

Oxygen Isotope Effects upon Reversible O₂-Binding Reactions: Characterizing Mononuclear Superoxide and Peroxide Structures

Michael P. Lanci and Justine P. Roth*

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218

Received September 26, 2006; E-mail: jproth@jhu.edu

The characterization of intermediates in oxidation reactions of transition metals is a common goal in biological and inorganic chemistry¹ needed to guide the development of new industrial catalysts that can use O₂ as a sacrificial oxidant. Such advances require improved capabilities for identifying metal–O₂ adducts as well as the mechanisms by which these species are formed. In this paper, we examine oxygen equilibrium isotope effects (¹⁸O EIEs) on reversible reactions that give rise to peroxide (O₂^{1–}) and superoxide (O₂^{1–}) compounds. The EIEs reported here provide benchmarks for interpreting intermediates during transition-metal-mediated O₂ activation in a variety of natural and synthetic systems.^{2–4}

Classic compounds with defined structures (Chart 1)⁵ were chosen to examine how ¹⁸O EIEs reflect the reduction of O₂ as well as the mode by which it coordinates to a metal center. The observation of O–O stretching frequencies, v(O-O) = 800-930 cm⁻¹ for side-on peroxide compounds and 1050-1200 cm⁻¹ for end-on superoxide compounds, has typically served this purpose, although intermediate structures, such as those assigned to side-on superoxide species, have challenged this simple means of classification.⁶ In principle, ¹⁸O EIEs complement existing spectroscopic techniques by reporting on changes in O–O bonding together with the formation of new metal–O bonds.

In this work, ¹⁸O EIEs were determined from the oxygen isotope composition of metal– O_2 adducts that had been pre-equilibrated with natural abundance O_2 from air. A detailed description of the high vacuum apparatus and methodology used for preparing samples has been published.^{2,3b,7} Samples were analyzed by isotope ratio mass spectrometry (IRMS) which gives ¹⁸O:¹⁶O to precisions of ± 0.0002 . The ¹⁸O EIEs were calculated according to eq 1 where R_t is the ¹⁸O:¹⁶O in the "total" O_2 isolated from air-saturated solutions containing the metal– O_2 adduct; R_u is the ¹⁸O:¹⁶O in the "unbound" O_2 from solutions containing only air and 1 - f is the fraction of metal-bound O_2 in the air-saturated solutions.

¹⁸O EIE =
$$\frac{K({}^{16}O{}^{16}O)}{K({}^{18}O{}^{16}O)} = \frac{1-f}{R_t/R_u - f}$$
 (1)

Reversibility of O_2 binding is a key requirement for accurate and reproducible determinations of ¹⁸O EIEs. Spurious results occur when metal— O_2 adduct decomposition leads to irreversible consumption of O_2 on the time scale of sample collection. In most experiments, the recovery of O_2 was nearly quantitative at ≥ 22 °C; yields were determined by manometry and based on concentrations of the metal— O_2 adducts detected by multinuclear NMR and UV—vis spectroscopy.⁷ Using the same methods, equilibrium constants for O_2 binding (K_{O_2}) under 1 atm of dry air were evaluated as a function of temperature in chlorobenzene (ClBz) or dimethylformamide (DMF) (Table 1).⁷

The metal $-O_2$ adducts in this study are derived from group IX transition metals. Binding of O_2 to square planar Rh^I or Ir^I precursors gives products with side-on peroxide ligands.⁸ These structures are characterized by ¹⁸O EIEs of 2–3% in DMF at 22 °C: 1.0199 ± 0.0017 (Rh), 1.0226 ± 0.0013 (Ir_{NCO}), and 1.0305 ± 0.0023 (Ir_{Cl}).

Chart 1. Structures and Abbreviations of the Compounds Examined

Table 1. Parameters Describing the Reversibility of O2 Binding

		% yield O2 ^a	$K_{02} \times 10^{-3}$ (M ⁻¹) ^a	ΔH^e (kcal mol $^{-1}$)	$\Delta S^{ m e}$ (e.u.)
Ir _{Cl}	DMF	82(13)	$16(1.9)^{b}$	-8.4(0.5)	-9.3(3.3)
Ir _{NCO}	DMF	93(10)	1.3(0.30)	-7.3(0.5)	-10(2)
Rh	DMF	90(6)	0.47(0.11)	-15.1(0.8)	-37(3)
Cosal	DMF	97(5) ^c	$0.32(0.02)^{c}$	-13.1(1.0)	-39(7)
Co _{sal}	ClBz	$110(19)^d$	$0.26(0.05)^d$	-12.4(1.9)	-40(7)
Copor	ClBz	$94(14)^d$	$0.63(0.21)^d$	-8.9(1.0) ^f	$-26(4)^{f}$

^{*a*} Measured at 22 ± 2 °C under 1 atm of dry air unless noted; ±1 σ errors are in parentheses. ^{*b*} Estimated from ΔH and ΔS at 22 °C. ^{*c*} At -14 °C. ^{*d*} At -28 °C. ^{*e*} Determined over the following ranges: 40 to 70 °C (Ir_{Cl}), 30 to 60 °C (Ir_{NCO}), 15 to 40 °C (Rh), 0 to -28 °C (Co_{sal}). ^{*f*} From ref 5d with errors ±2 σ ; determined in toluene from -35 to -80 °C.

Binding of O₂ to five-coordinate Co^{II} precursors gives products with end-on superoxide ligands.⁹ Here, lower temperatures were necessary to determine the ¹⁸O EIEs, which are considerably smaller than those quoted above: 1.0041 \pm 0.0011 (Co_{sal}) in DMF at -14 °C, 1.0053 \pm 0.0017 (Co_{sal}) in ClBz at -28 °C, and 1.0066 \pm 0.0013 (Co_{por}) in ClBz at -28 °C. Change in the ¹⁸O EIE for Co_{sal} was undetectable from -28 to 0 °C.⁷

The results for the diverse compounds in solvents of widely varying polarity¹⁰ provide strong evidence that ¹⁸O EIEs are characteristic of the level of O₂ reduction together with the mode by which O₂ binds to the metal (Figure 1). The variation in the observed ¹⁸O EIEs is large considering that the range of calculated ¹⁸O EIEs is 1.00-1.05 for reactions (where O₂ is reduced to HO₂, H₂O₂, H₂O, O₂¹⁻, and O₂²⁻).¹¹ Further, the distinctive ¹⁸O EIEs for side-on peroxide and end-on superoxide structures are in contrast to the expectation of similar ¹⁸O EIEs (~1.01) based on an earlier model.¹¹ This model assumed analogous bonding within a metal superoxide species and HO₂ as well as within a metal peroxide species and H₂O₂.

The formalism of Bigeleisen and Goeppert-Mayer¹² is generally used to calculate heavy atom isotope effects in terms of the change in force constants in proceeding from a reactant to a product state. Using this approach, ¹⁸O EIEs of 1.049 ($O_2 \rightarrow O_2^{2-}$) and 1.033 ($O_2 \rightarrow O_2^{1-}$) are predicted for the reduction of O_2 in the absence of concomitant bond formation (Figure 2). Here the size of the ¹⁸O

Figure 1. Left: ¹⁸O equilibrium isotope effects upon forming the compounds in Chart 1. Right: ¹⁸O EIE versus ΔG calculated at 25 °C.

O-O Stretching Coordinate

Figure 2. Oxygen isotope effect due to a change in O–O force constant; 16,16 and 18,16 designate zero-point energies of the oxygen isotopologues.

EIE is largely determined by the O–O force constant of the product relative to that of O_{2} .²

The ¹⁸O EIEs measured for side-on peroxide compounds roughly agree with those calculated using stretching frequencies for the O–O and metal–O normal modes in the above-mentioned approach.³ We have encountered more difficulty matching the experimental results for Co_{sal} and Co_{por} , where calculated ¹⁸O EIEs are 1.006–1.017. The variations appear to reflect uncertainties in the low-frequency modes.⁷ The observed ¹⁸O EIEs are, however, close to values reported for end-on Fe^{III} superoxide species in heme proteins (1.0039–1.0056). In this original work, the small size of the ¹⁸O EIEs was attributed to hydrogen bonding of the terminal oxygen to a nearby amino acid.¹¹ Such effects are unlikely in the present study since the ¹⁸O EIEs for Co_{sal} and Co_{por} are indistinguishable in DMF and ClBz, yet only DMF has the ability to form hydrogen bonds.

¹⁸O EIEs which characterize the metal— O_2 adducts are likely the result of competing enthalpic and entropic isotope effects,¹³ making Figure 2 an oversimplified view. Weakening of the O–O bond contributes to a normal (>1) isotope effect upon ΔH . Loss of mass-dependent translational and rotational modes when O_2 coordinates to a metal contributes to a normal isotope effect upon ΔS . Offsetting these effects is the formation of new, low-frequency vibrational and rotational modes in the product. The large differences seen for side-on peroxide and end-on superoxide structures suggest that these new modes reduce the ¹⁸O EIEs from the values estimated for $O_2^{2^-}$ and $O_2^{1^-}$ yet do not affect the difference due to the change in O–O force constant. This result would seem counterintuitive because the metal–O modes are also expected to influence the ¹⁸O EIE.

The physical origin of ¹⁸O EIEs as well as how they relate to ¹⁸O kinetic isotope effects (KIEs) will be the subject of future investigations. At this stage, some insight may be gleaned from a comparison of the reactions examined here. If it is assumed that the ¹⁸O EIEs for each of the cobalt compounds is the same at 25 °C and the lower experimental temperatures, a trend is observed where the ¹⁸O EIE increases as ΔG for O₂ binding becomes more favorable (Figure 1). The result is in contrast to expectations based upon net bonding changes; the formation of two metal–O bonds stabilizes peroxide compounds relative to superoxide compounds. Instead, the trend seems to indicate that the magnitudes of the ¹⁸O EIEs are largely determined by changes in the O–O force constant, that is, decreases in ν (O–O). Studies of O₂ adducts derived from different

metals and having different bonding geometries are currently in progress to further address this interesting observation.

Insofar as ¹⁸O EIEs can be taken as upper limits to ¹⁸O KIEs upon unidirectional O₂ binding, the present results support previous studies of O₂ activation by group IX and X metal compounds.^{3a} In this work, we reported ¹⁸O KIEs of 1.0069-1.0268 on reactions leading to metal peroxide products. On the grounds that (i) KIEs decreased in proportion to the barriers to O₂ binding and (ii) no intermediate was detectable in any of the reactions, we proposed a single-step mechanism involving a transition state with peroxide rather than superoxide character. Assuming the above ¹⁸O EIEs as boundary conditions, a KIE < 1.007 would be expected for a transition state leading to a superoxide intermediate and a KIE < 1.03 would be expected for a transition state leading to a peroxide product. Thus, the observed KIEs appear more consistent with a concerted 2e⁻ mechanism. Of course, a sequential mechanism involving the reorganization of a high-energy superoxide intermediate to a peroxide product in the rate-limiting step cannot be excluded.

In summary, oxygen isotope effects upon reversible O₂ binding to synthetic transition-metal compounds have been determined for the first time. Using defined systems, we have found that the isotope effect is distinctly different when O₂ is bound as a side-on peroxide ligand versus an end-on superoxide ligand to a group IX metal. We suggest the ranges of isotope effects for these compounds can serve as benchmarks for identifying transient metal $-O_2$ adducts. For example, in cases where outer-sphere electron transfer to O₂ can be ruled out, ¹⁸O KIEs of ~1% may signal the intermediacy of end-on superoxide species,^{2,4} whereas values of 2–3% are consistent with peroxide intermediates. This type of analysis provides a new approach to characterizing intermediates in catalytic oxidation reactions.

Acknowledgment. We are grateful for support from NSF CAREER award 0449900 (to J.P.R.) and a Kilpatrick fellowship (to M.P.L.) awarded by the JHU Department of Chemistry.

Supporting Information Available: A description of the experiments and calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Active Oxygen in Biochemistry; Valentine, J. S., Foote, C. S., Greenberg, A., Liebman, J. F., Eds.; Chapman & Hall: New York, 1995.
 (b) Biomimetic Oxidations Catalyzed by Transition Metal Complexes; Meunier, B., Ed.; Imperial College Press: London, 2000.
- (2) Roth, J. P.; Klinman, J. P. In *Isotope Effects in Chemistry and Biology*; Kohen, A., Limbach, H. H., Eds.; CRC Press: Boca Raton, FL, 2005.
- (3) Lanci, M. P.; Brinkley, D. W.; Stone, K. L.; Smirnov, V. V.; Roth, J. P. Angew. Chem., Int. Ed. 2005, 44, 7273. (b) Smirnov, V. V.; Brinkley, D. W.; Lanci, M. P.; Karlin, K. D.; Roth, J. P. J. Mol. Catal. A 2006, 251, 100.
- (4) (a) Smirnov, V. V.; Roth, J. P. J. Am. Chem. Soc. Accepted. (b) Smirnov, V. V.; Roth, J. P. J. Am. Chem. Soc. 2006, 128, 3683.
- (5) (a) Vaska, L.; Chen, L. S.; Senoff, C. V. Science 1971, 174, 587. (b) McGinnety, J. A.; Payne, N.; Ibers, J. A. J. Am. Chem. Soc. 1969, 91, 6301. (c) Trovog, B. S.; Kitko, D. J.; Drago, R. S. J. Am. Chem. Soc. 1976, 98, 5144. (d) Walker, F. A. J. Am. Chem. Soc. 1973, 95, 1154.
- (6) Cramer, C. J.; Tolman, W. B.; Theopold, K. H.; Rheingold, A. L. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3635.
- (7) See Supporting Information.
- (8) (a) Vaska, L. Science 1963, 140, 809. (b) McGinnety, J. A.; Payne, N. C.; Ibers, J. A. J. Am. Chem. Soc. 1969, 91, 6301. (c) Reed, C. A.; Roper, W. R. J. Chem. Soc., Dalton Trans. 1973, 1370.
- (9) (a) Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 140. (b) Cini, R.; Orioli, P. J. Chem. Soc., Dalton Trans. 1983, 2564.
 (10) Dielectric constants at 20 °C are ε = 36.7 (DMF) and ε = 2.7 (ClBz):
- (10) Dielectric constants at 20 °C are ε = 36.7 (DMF) and ε = 2.7 (CIBz): Lide, D. R. Handbook of Chemistry and Physics, 74th ed.; CRC Press: Boca Raton, FL, 1993.
- (11) Tian, G.; Klinman, J. P. J. Am. Chem. Soc. 1993, 115, 8891.
- (12) Bigeleisen, J.; Goeppert-Mayer, M. J. Chem. Phys. 1947, 15, 26.
- (13) This issue has been discussed extensively for the related reaction of H₂ + Ir_{Cl}. See: Janak, K. E.; Parkin, G. J. Am. Chem. Soc. 2003, 125, 13219 and references therein.

JA0669326